Mobile Site ›
Print Friendly View

Test ID: MLHMS    
MLH1 Mutation Screen

Useful For Suggests clinical disorders or settings where the test may be helpful

Determining whether absence of MLH1 protein, by immunohistochemistry in tumor tissue, is associated with a germline mutation in the affected individual

 

Establishing a diagnosis of Lynch syndrome/hereditary nonpolyposis colorectal cancer

 

Identification of familial MLH1 mutation to allow for predictive testing in family members

Clinical Information Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer or HNPCC) is an autosomal dominant hereditary cancer syndrome associated with germline mutations in the mismatch repair genes, MLH1, MSH2, MSH6, and PMS2. Deletions within the 3-prime end of the EPCAM gene have also been associated with Lynch syndrome, as this leads to inactivation of the MSH2 promoter.  

 

Lynch syndrome is predominantly characterized by significantly increased risks for colorectal and endometrial cancer. The lifetime risk for colorectal cancer is highly variable and dependent on the gene involved. The risk for colorectal cancer-associated MLH1 and MSH2 mutations (approximately 50%-80%) is generally higher than the risks associated with mutations in the other Lynch syndrome-related genes. The lifetime risk for endometrial cancer (approximately 25%-60%) is also highly variable. Other malignancies within the tumor spectrum include gastric cancer, ovarian cancer, hepatobiliary and urinary tract carcinomas, and small bowel cancer. The lifetime risks for these cancers are <15%. Of the 4 mismatch repair genes, mutations within the PMS2 gene confer the lowest risk for any of the tumors within the Lynch syndrome spectrum.

 

Several clinical variants of Lynch syndrome have been defined. These include Turcot syndrome, Muir-Torre syndrome, and homozygous mismatch repair mutations (also called constitutional mismatch repair deficiency syndrome). Turcot syndrome and Muir-Torre syndrome are associated with increased risks for cancers within the tumor spectrum described, but also include brain/central nervous system malignancies and sebaceous carcinomas, respectively. Homozygous mismatch repair mutations, characterized by the presence of biallelic deleterious mutations within a mismatch repair gene, are associated with a different clinical phenotype defined by hematologic and brain cancers, cafe au lait macules, and childhood colon or small bowel cancer.

 

There are several strategies for evaluating individuals whose personal or family history of cancer is suggestive of Lynch syndrome. One such strategy involves testing the tumors from suspected individuals for microsatellite instability (MSI) and immunohistochemistry (IHC) for the presence or absence of defective DNA mismatch repair. Tumors that demonstrate absence of expression of MLH1 and PMS2 are more likely to have a germline mutation in the MLH1 gene.

Reference Values Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

An interpretive report will be provided.

Interpretation Provides information to assist in interpretation of the test results

All detected alterations will be evaluated according to American College of Medical Genetics and Genomics (ACMG) recommendations.(1) Variants will be classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Some individuals who have a diagnosis of MLH1-related Lynch syndrome may have a mutation that is not identified by this method (eg, promoter mutations, deep intronic mutations). The absence of a mutation, therefore, does not eliminate the possibility a diagnosis of Lynch syndrome. For predictive testing, it is important to first document the presence of an MLH1 gene mutation in an affected family member.

 

In some cases, DNA alterations of undetermined significance may be identified.

 

Rare polymorphisms exist that could lead to false-negative or false-positive results. If results obtained do not match the clinical findings, additional testing should be considered.

 

A previous bone marrow transplant from an allogenic donor will interfere with testing. Call Mayo Medical Laboratories for instructions for testing patients who have received a bone marrow transplant.

 

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Errors in our interpretation of results may occur if information given is inaccurate or incomplete.

 

We strongly recommend that patients undergoing predictive testing receive genetic counseling both prior to testing and after results are available.

 

In addition to disease-related probes, the multiplex ligation-dependent probe amplification technique utilizes probes localized to other chromosomal regions as internal controls. In certain circumstances, these control probes may detect other diseases or conditions for which this test was not specifically intended. Results of the control probes are not normally reported. However, in cases where clinically relevant information is identified, the ordering physician will be informed of the result and provided with recommendations for any appropriate follow-up testing.

 

Somatic alterations (eg, promoter hypermethylation) have been identified in individuals with an absence of MLH1 protein expression in tumor tissue. Therefore, an MSI-H phenotype (>30% of microsatellites) and the absence of protein expression for MLH1 may be the result of a somatic alteration, rather than a germline mutation. Testing for MLH1 promoter hypermethylation and the BRAF V600E mutation (MLBRF / MLH1 Hypermethylation and BRAF Mutation Analyses, Tumor) in a colon tumor from an affected individual may help to confirm or rule out this possibility. Additionally, evaluation of other affected family members’ tumors for the presence or absence of defective mismatch repair may be helpful in evaluating the hereditary nature of the disorder.

Supportive Data

Samples from approximately 100 patients were tested by DNA sequence analysis and the results compared to those obtained by other techniques (CSGE, manual DNA sequence) utilized in the laboratory.

Clinical Reference Provides recommendations for further in-depth reading of a clinical nature

1. Richards CS, Bale S, Bellissimo DB, et al: ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med 2008:10(4):294-300

2. Baudhuin LM, Burgart LJ, Lentovich O, Thibodeau SN: Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch Syndrome. Fam Cancer 2005;4:255-265

3. Umar A, Baland CR, Terdiman JP, et al: Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004;261-268

4. Lynch HT, de le Chapelle A. Hereditary colorectal cancer. N Engl J Med 2003;348:919-932

5. International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer. Mutation Database. Available from URL: http://www.insight-group.org/

Special Instructions and Forms Describes specimen collection and preparation information, test algorithms, and other information pertinent to test. Also includes pertinent information and consent forms to be used when requesting a particular test